Worcester Polytechnic Institute

Terms from Physics 1110

The following is some equations and functions that are essential to Physics 1110. They are taken directly from the following Physics book:

  1. Components of Vectors (pg.13 Section 1-9)

    tex2html_wrap_inline239 If we know the magnitude A of a vector A and its direction, given by an angle tex2html_wrap_inline241 , we can calculate the components.

    tex2html_wrap_inline243 and tex2html_wrap_inline245

  2. Scalar Product (pg. 19 Section 1-11)

    tex2html_wrap_inline239 tex2html_wrap_inline249

  3. Vector Product (pg. 21 Section 1-11)

    tex2html_wrap_inline239 We define the vector product to be a vector quantity with a direction perpendicular to a plane in which two vectors lie and with a magnitude of tex2html_wrap_inline253 . In other words, the vector product tex2html_wrap_inline255

  4. Average Velocity (pg. 32 Section 2-2)

    tex2html_wrap_inline239 The average velocity is a vector in a certain direction with an x -component as follows: tex2html_wrap_inline261

  5. Instantaneous Velocity (pg. 34 Section 2-3)

    tex2html_wrap_inline239 tex2html_wrap_inline265

  6. Average Acceleration (pg. 37 Section 2-4)

    tex2html_wrap_inline239 tex2html_wrap_inline269

  7. Instantaneous Acceleration (pg. 38 Section 2-4)

    tex2html_wrap_inline239 tex2html_wrap_inline273

  8. Motion with Constant Acceleration (pg. 41 Section 2-5)

    tex2html_wrap_inline239 tex2html_wrap_inline277 where tex2html_wrap_inline279 is the velocity at the initial time t = 0.

  9. Position of an Object (pg. 43 Section 2-5)

    tex2html_wrap_inline239 tex2html_wrap_inline285 where tex2html_wrap_inline279 is the initial velocity and tex2html_wrap_inline289 is the initial position. Acceleration is constant.

  10. The Velocity Vector (pg. 62 Section 3-2)

    tex2html_wrap_inline239

    displaymath293

    where tex2html_wrap_inline295 is the change in position. The components of this vector are as follows:

    displaymath297

  11. The Acceleration Vector (pg. 64 Section 3-3)

    tex2html_wrap_inline239

    displaymath301

    where the components of this vector are as follows:

    displaymath303

  12. Instantaneous Accleration of Circular Motion (pg. 76 Section 3-5)

    tex2html_wrap_inline239 tex2html_wrap_inline307 where R is the radius of the circle and the acceleration points inward towards the center of the circle.

  13. Newton's Second Law of Motion (pg. 101 Section 4-3)

    tex2html_wrap_inline239 tex2html_wrap_inline311

  14. Weight (pg. 99 Section 4-4)

    tex2html_wrap_inline239 tex2html_wrap_inline315 where tex2html_wrap_inline317 is the acceleration due to gravity.

  15. Newton's Third Law (pg. 107 Section 4-5)

    tex2html_wrap_inline239 tex2html_wrap_inline321 or tex2html_wrap_inline323

  16. Equilibrium (pg. 107 Section 4-6)

    tex2html_wrap_inline239 A particle is in equilibrium if tex2html_wrap_inline327 .

  17. Coefficient of Kinetic Friction (pg. 132 Section 5-4)

    tex2html_wrap_inline239 tex2html_wrap_inline331 where tex2html_wrap_inline333 is the sliding friction, tex2html_wrap_inline335 is the normal force, and tex2html_wrap_inline337 is the coefficient of kinetic friction.

  18. Coefficient of Static Friction (pg. 133 Section 5-4)

    tex2html_wrap_inline239 tex2html_wrap_inline341 where tex2html_wrap_inline343 is the static friction force, tex2html_wrap_inline345 is the coefficient of static friction, and tex2html_wrap_inline335 is the normal force.

  19. Centripetal Acceleration (pg. 139 Section 5-5)

    tex2html_wrap_inline239 tex2html_wrap_inline351 where R is the radius and T is the period and is equal to tex2html_wrap_inline357 .

  20. Work

    (pgs. 164-181 Sections 6-2 to 6-4)

    tex2html_wrap_inline239 tex2html_wrap_inline361

    displaymath363

    where tex2html_wrap_inline365 and tex2html_wrap_inline367 are displacements, F is the magnitude of the applied force, and W is work.

    displaymath373

    where tex2html_wrap_inline375 and tex2html_wrap_inline377 are points along a curve, tex2html_wrap_inline379 are initesimal vector displacements, and tex2html_wrap_inline381 is the angle between tex2html_wrap_inline383 and tex2html_wrap_inline379

    displaymath387

    tex2html_wrap_inline239 tex2html_wrap_inline391 (pg. 155)

  21. Kinetic Energy (pg. 170 Section 6-3)

    tex2html_wrap_inline239 tex2html_wrap_inline395

  22. Power (pg. 180 Section 6-5)

    tex2html_wrap_inline239 tex2html_wrap_inline399 (pg. 159)

    tex2html_wrap_inline239 tex2html_wrap_inline403 (pg. 160)

  23. Gravitational Potential Energy (pg. 195 Section 7-2)

    tex2html_wrap_inline239 tex2html_wrap_inline407 where U is the gravitational potential energy, mg is the weight of the object, and y is the displacement.

  24. Elastic Potential Energy (pg. 205 Section 7-3)

    tex2html_wrap_inline239 tex2html_wrap_inline417 where U is the elastic potential energy, k is the force constant of the spring, and x is the extension displacement.

  25. Momentum (pg. 227 Section 8-2)

    tex2html_wrap_inline239 tex2html_wrap_inline425 where tex2html_wrap_inline427 is the momentum, m is the mass, and tex2html_wrap_inline431 is the velocity vector.

    The following is a restatement of Newton's Second Law:

    displaymath433

  26. Impulse (pg. 228-229 Section 8-2)

    tex2html_wrap_inline239 tex2html_wrap_inline437 where tex2html_wrap_inline439 is momentume, tex2html_wrap_inline383 is the force, and tex2html_wrap_inline427 is the momentum. (pg. 210)

    tex2html_wrap_inline239 tex2html_wrap_inline447 (pg. 211)

  27. Torque (pg. 294 Section 10-2)

    tex2html_wrap_inline239 tex2html_wrap_inline451 where I is the moment of inertia, tex2html_wrap_inline455 .

    tex2html_wrap_inline239 tex2html_wrap_inline459 where tex2html_wrap_inline383 is the force and tex2html_wrap_inline463 is the position vector that is perpendicular to that force.

  28. Torque of a Couple (pair of forces)

    tex2html_wrap_inline239 tex2html_wrap_inline467 where tex2html_wrap_inline469 is the total torque of the couple about an arbitrary point o, F is the is the magnitude of each force, and l is the perpendicular distance separating the two forces.

    For the following, r is displacement, tex2html_wrap_inline241 is the angle in radians, tex2html_wrap_inline479 is angular velocity, and tex2html_wrap_inline481 is the angular acceleration. Any tex2html_wrap_inline483 is that variable at time zero.

  29. Angular Velocity (pgs. 269 Section 9-2)

    tex2html_wrap_inline239 Average angular velocity is as follows:

    displaymath487

    tex2html_wrap_inline239 Instantaneous angular velocity is as follows:

    displaymath491

  30. Angular Acceleration (pgs. 272 Section 9-3)

    tex2html_wrap_inline239 Average angular velocity is as follows:

    displaymath495

    tex2html_wrap_inline239 Instantaneous angular velocity is as follows:

    displaymath499

    tex2html_wrap_inline239 Another way to express angular acceleration:

    displaymath503

  31. Equations for Rotation with Constant Angular Acceleration (pgs. 272-273 Section 9-3)

    tex2html_wrap_inline505

  32. Tangential Component of Acceleration (pg. 274 Section 9-4)

    tex2html_wrap_inline239 tex2html_wrap_inline509 acceleration, tex2html_wrap_inline479 is angular velocity, r is

  33. Radial Component of Acceleration (pg. 274 Section 9-4)

    tex2html_wrap_inline239 tex2html_wrap_inline517

  34. Rotational Kinetic Energy, K (pg. 277 Section 9-5)

    tex2html_wrap_inline239 tex2html_wrap_inline521 where I is the momoent of inertia and is equal to tex2html_wrap_inline525 where m is the mass of the particle and r is its distance from the center of rotation.

  35. Moment of Inertia (pg. 277 Section 9-5)

    tex2html_wrap_inline239 tex2html_wrap_inline533 where dm are small mass elements of a body, r is the distance from the axis of rotation, tex2html_wrap_inline539 is the density of the body.

  36. Kinetic Energy of a Rigid Body (pg. 301 Section 10-4)

    tex2html_wrap_inline239 tex2html_wrap_inline543 where tex2html_wrap_inline545 is the center-of-mass velocity and tex2html_wrap_inline547 is the momoent of inertis for an axis trhought tha center of mass ( tex2html_wrap_inline549 ) where M is mass and R is radius.

  37. Work and Power in Rotational Motion (pgs. 307 - 308 Section 10-5)

    The following relationships are fully derived in the text. See the referenced pages.

    displaymath555

    displaymath557

    displaymath559

    All of the variables have been previously defined.

  38. Angular Momentum (pg. 309-311 Section 10-6)

    tex2html_wrap_inline239 tex2html_wrap_inline563 tex2html_wrap_inline565 tex2html_wrap_inline567 where tex2html_wrap_inline569 is the angular momentum, is the position vector, tex2html_wrap_inline427 is the momentum, tex2html_wrap_inline575 is torque, I is the moment of inertia, amd tex2html_wrap_inline479 is the angular velocity.



Back to the Bridge Projects Home Page



Art Heinricher
Mon Jul 28 09:17:56 EDT 1997